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1. INTRODUCTION

1.1 THE FINITE ELEMENT METHOD

The finite element method, in general, is an approximate method to

solve differential equations. Using variational calculus the differential

equation under consideration is posed as a functional. The resulting

functional depends upon the unknowns and their derivatives with respect to

the spatial coordinates x,y and z and possibly the time, t. In structural

problems the functional represents a meaningful quantity, namely, the

potential energy. However, in general, the functional may not have any

physical interpretation. Minimizing the functional with respect to the

unknowns is equivalent to solving the differential equation. The functional

is minimized by setting its first variation to zero. In structural problems this

corresponds to the well known concept of minimization of the potential

energy. The result of the minimization is a set of algebraic equations

(1.1) [K]{u} = {f}

where [ K] is the matrix of coefficients of the unknowns and is known as the
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"stiffness matrix",

{ u } is an array of unknowns and

{ f } is an array of forcing functions.

The equations are then solved for u. In a typical application the

domain under consideration is modeled by dividing it into elements. An

interpolation function, or shape function, is set for the elements to interpolate

values of the unknown at any point inside the element in terms of its values

at the nodes. This interpolation function is used in the functional which when

minimized as described above, yields the stiffness matrix. The reader is

directed to several excellent books on finite element method by Zienkiewics

[1,2]*, Segerlind [3], Reddy [4], and Huston [5]. The point to note for this

report is the important role of the minimization process involved in the finite

element methods.

1.2 MESH GENERATION

Each element in the finite element model is addressed by its

*Numbers in brackets indicate references listed at the end.
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number. Also each node is addressed by its number. The inter-connectivity

of the elements is determined by the common nodes shared by the

elements. In a model with few elements and nodes, the user can manually

divide the domain, number each element and node, and keep track of the

element connectivity. However, in models with many nodes and elements,

the effort required to divide the domain into elements and attend to

connectivity is great. It then becomes difficult to accomplish this task

without committing errors. However, there are several finite element pre-

processors which do this job automatically once the geometry is defined.

Users can then devote more time to interpreting results. Shephard [6]

has reviewed the current trends in mesh generation. Although there are

several ways to generate meshes, these methods fall into two broad

categories:

1.2.1 MAPPING TECHNIQUES

This type of mesh generation is best suited when the geometry is

simple - as in the case of a rectangle or a cuboid. Typically the user

needs to choose the number of elements on each of the edges that

defines the geometry and the element concentration along the edges. The

software then generates the mesh simply by joining nodes on the opposite
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edges. NASTRAN MSGMESH t  , GIFTSc , SUPERSAP. and

SUPARTABt (in I-DEAS) have this capability. For a more complicated

geometry Schwarz-Christoffel [7] mapping has been used . The difficulty in

evaluating integrals involved in the Schwarz-Christoffel transformation

however makes this technique less attractive. Moreover, mesh generated by

these techniques may introduce elements with high aspect ratios and

elements that are highly distorted.

1.2.2 FREE MESH GENERATION

This method of generation is best suited for models with

complicated geometry. SUPERTAB has this capability. The model is

broken down into sub-areas and sub-volumes. On each of the curves of

every sub-area and sub-volume the number of elements and their

concentrations are selected. The software then generates a mesh that is

consistent with the selected values and satisfies the requirement on the

aspect ratios and the distortion factors of the elements.

t NASTRAN MSGMESH is developed by MacNeal-Schwendler Corporation
C) GIFTS is developed by Sperry Univac Computer System
* SUPERSAP is developed by Algor Corporation

1-DEAS is developed by Structural Dynamic Research Corporation.

4



Although these pre-processors help in generating acceptable meshes,

it is still difficult to obtain a mesh that is best suited for the problem at

hand. The difficulty lies in the definition of the " best " mesh . Is there

a best mesh for a particular domain ? If so, is there a different one for

different set of boundary conditions or a different set of loading ? Is

there a different optimal mesh for different differential equations in the

same domain ? Answers to these questions are discussed in the following

sections.

1.3 OPTIMAL MESH

Recall from section 1.1 that the functional is a function of the

unknown or dependent variables. Note that it is also a function of the

coordinates of the nodes. Therefore it can be expressed as:

(1.2) 7r = lr(ui,dk)

where, ui is the vector of unknown, dk is the position vector of kth

node.

In order to obtain a true minimum on (1.2), in addition to the

equilibrium equations (1.1), it is necessary to consider the following
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equations.

(1.3)

__r 1 a~ju
-~ui-~ - 1 ~ - -r = 0

where, rk is the residual vector.

Solution of (1.3) along with the geometrical constraints will yield the

optimal locations of the nodes, which when used in (1.1) should result in

a uj that is closest to umct.

The method seems to be very simple, theoretically. However, the

non-linear algebraic equations (1.3) are difficult to solve explicitly. Even

for a simple geometry in one dimension the algebra is very complicated.

Numerical solutions are also difficult [8]. Some of the solution methods

for non-linear equations like gradient methods and complex methods have

been tried but with little success. Among investigators examining this

problem, Prager[9] has made a note worthy contribution. He examined a

bar with a linearly varying cross section under tension. He showed that

the grid producing the desired least potential energy is the one where the

cross section areas at the nodes form a geometric series. This problem is

studied in greater detail in the next chapter.
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1.4 MESH REFINEMENT

As described in section 1.2 the user needs to select the number of

nodes and elements in the model. The selection may be the one that

leads to the best description of the domain geometrically. For example, a

curved surface could be modelled by a series of interconnected flat

rectangular facets. The larger the number of facets, the better is the

model. The selection may also be based upon intuition, past experience

and engineering judgement. The mesh obtained may be adequate in some

cases. In other cases, especially when singularities are present, the mesh

may not be adequate to obtain the results to the accuracy desired. In

such cases, the meshes need to be refined.

1.4.1 REFINEMENT PROCESS

There are three ways of refining a finite element mesh:

a) The H-method: This method increases the number of elements

and hence decreases the element size while keeping the polynomial order

of the shape function constant.

b) The P-method: This method increases the polynomial order of

7



the interpolation function while keeping the number of elements in the

model constant.

c) The R-method: This method redistributes the nodes while keeping

the element number and the polynomial order of the interpolation

function constant.

1.4.1.1 H - Method

This method is primarily based on the choice of characteristic length

of the elements. "Characteristic length " is referred to in a generalized

sense and is required to define the element topologically. A linear

element requires one characteristic length, whereas an element of

rectangular shape requires two characteristic lengths and a triangular

element requires three characteristic lengths for its definition. In the

triangular element the three length informations may be any combination

of lengths and angles.

Instead of expressing the functional in terms of the position vectors

of the nodes, as in (1.2), it can be expressed as a function of the

element characteristic lengths as

8



(1.4) 7r = ir(ui,hik)

where, hik is the element characteristic length, 1 is the index on the

characteristic length for element k

Also, note that there will be geometrical constraints on hk. For

example, the sum of the element lengths in a particular direction should

be equal to the overall dimension of the model in that direction. Again

as described in section 1.3, the function can be minimized with respect to

the characteristic lengths.

(1.5) a 2 K1: uah --- 2 i uj Oahu, Ui: k

Solving (1.5) along with the constraints yield the characteristic

lengths and hence defines the best mesh. Equation (1.5) is equivalent to

(1.3) cast in the frame work of characteristic lengths. Therefore the

solution as indicated in section 1.3 is difficult. A practical procedure

using this method consists of selecting a coarse initial mesh, solving the

equilibrium equations and computing the residue rk on each element. The

set of elements with large values of residues is the region that needs to

be refined. The identified region can be refined by sub-dividing the

elements, thus creating new regions, or by deleting all the elements in the
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region and replacing them by finer elements. However, the new elements

need to be of the same type as those in the initial mesh. The equations

of the new model are solved and the residues are computed. If the values

of the residues are still large, the refinement procedure can be repeated.

Indeed , it could be used iteratively until the solution meets the

prescribed accuracy.

The monotonic convergence of the refinement procedure has been

studied by Melosh [10] and Key [11]. A convergence theorem has been

introduced by Carroll and Baker [12], which states :

Theorem: A necessary consequence of the following refinement sequence

(1.6) 7rn 7rn+l :" " * >'n~ m " . > 7',,d

where, m represents successive refinements of the initial finite element

mesh n, is the existence of an optimum sub-division such that

(1.7) wrn+m(hu,) < 7r+m(hlk)

where h& correspond to the optimum mesh.

The usefulness of this theorem can be explored in the discussion of

the r method. The difficulty in using this method is in the estimation of
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the derivatives involved in the computations of the residues.

1.4.1.2 P - Method

This method is primarily based on the choice of the order of the

interpolation function, which in practice, translates to the choice of

element type. For example, in a two dimensional domain, the basic

triangular element with three nodes at the three vertices uses a linear

shape function (p-l). In order to choose quadratic shape functions (p=2),

the triangular element with six nodes, three at the vertices and three at

mid-side locations, has to be selected. Similarly, for cubic functions, an

element with nine nodes is selected.

Higher order elements generally provide better description of the

domain geometrically. They are particularly useful in regions where the use

of lower order elements would result in a mesh with poor aspect ratios in

those elements. From the point of view of solution accuracy, higher order

elements are usually more accurate than the lower order elements. But

this does not mean that increasing the polynomial order indiscriminately

will always provide point-wise convergence to the exact solution. The

argument is based on the theory of interpolation. Prenter [13] states that

this notion on convergence was first dispelled by Meray and later by
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Runge. He illustrates this with the function f(x) = 1/(1+5x2) being

interpolated by Lagrange polynomial of order 5 and 15 with evenly spaced

nodes in the interval [-1,1] which display divergence at - 1 and 1.

Although the example is for a continuous interpolation function rather

than a piecewise function, as in a finite element model, it shows that

there is good reason to exercise caution in increasing the polynomial

order.

1.4.1.3 R - Method

This is a far less explored method. It neither increases the

polynomial order nor decreases the element character length. The mesh is

refined simply by re-distributing the nodes in the domain such that the

potential energy is reduced.

Recall the theorem introduced by Carroll and Baker, stated in

section 1.4.1.1. The theorem indicates that there exists an optimal

distribution of the nodes in a domain. Any other distribution will yield a

potential energy higher than the lowest possible for the given number of

degree of freedom. The theorem also indicates that : given a distribution

of nodes, a new distribution will be a refinement over the old distribution
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only if it results in a lower potential energy than the old distribution.

This fact could be used in an iterative refinement procedures.

1.4.2 ADAPTIVE MESH REFINEMENT

The refinement that follows the requirements of the differential

equation or the boundary conditions closely is called an adaptive

refinement. This method is used to tailor the mesh, including finer

elements. It can also provide elements of higher polynomial order where

necessary as opposed to the method of h or p - refinement all over the

domain. The practical method mentioned in section 1.4.1.1 is adaptive. The

obvious advantage is that it achieves the desired accuracy level while

keeping the number of degrees of freedom low.

1.4.3 A - PRIORI AND A - POSTERIORI METHODS

The classification of methods into a-priori and a-posteriori refers to

refinement before and after the solution of the equilibrium equations. In

a finite element program the solution process is one that needs much of

computer time. If discretization errors can be estimated a-priori, then the

mesh can be suitably altered to obtain the best accuracy possible by
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solving the equations only once. Unfortunately there are no practical a-

priori methods available. The author has not found any in the literature

survey. This study is an attempt to provide one. There are several a-

posteriori methods available for refinement.

1.4.4 USE OF HIERARCHICAL ELEMENTS IN REFINEMENT

An hierarchical displacement element is one whose stiffness matrix

contains the stiffness matrices of lower order elements explicitly as

submatrices[14].

Consider a two-node axial element. Its stiffness matrix is given by:

AlE [1

An hierarchical displacement element of one higher order contains

an additional node in the middle of the element, as in the conventional

quadratic element. However the shape function chosen for the midside

node is different from the one chosen in the conventional element. This

results in the stiffness matrix:

A E 1 1 01
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Note that the stiffness matrix of the basic element is contained in

the new matrix as a submatrix. The stiffness matrices of higher order

elements are built by a similar process if a higher order element is coded

into the finite element program, it includes stiffness matrices of all lower

order elements. In the process of refinement if a higher order element is

chosen, the previously computed stiffness coefficients would still be valid.

Hence, only a few additional coefficients have to be evaluated. The

method is easier than the conventional p - method of increasing the

polynomial order where the computation of the entire higher order

element stiffness matrix is required.

Refinement using hierarchical elements is a-posteriori and appears to

be attractive. However more research work needs to be done in this area.

1.5 RESEARCH OBJECTIVES

It is clear that the accuracy of the finite element results is mesh

dependent. A proper mesh selection procedure is therefore necessary. A

posteriori methods are adaptive in nature but are expensive in terms of

computer processing time. On the other hand, a priori methods are not

adaptive. They use geometrical criterions, element aspect ratios, for

15



example, for improvements. Some of them help estimating the overall error.

They, however, do not indicate the regions which need refinement. The

prime objective of this report is, therefore, to develop a criterion which helps

in identifying the region for refinement or rezoning process even before the

equilibrium equations are solved. The procedure based on the criterion

should be able to guide the user in improving the grids.

Finally, the report itself is based upon the first author's doctoral

dissertation [151 at the University of Cincinnati.
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2. ANALYSIS

2.1 ANALYTICAL APPROACH

The objective is to develop a practical and efficient procedure of

grid enhancement and optimization. The thesis is that for many problems

the minimization of the trace of the stiffness matrix with respect to the

nodal coordinates, leads to a minimization of the potential energy, and as

a consequence, provides the optimal grid configuration. To see this,

consider the governing matrix equation of finite element analysis:

(2.1) [K]{u} = {f}

where, [K] is the stiffness matrix, {u} is the array of dependent

variables, and {f} is the force array.

Matrix [K] can be viewed as an operator which maps {u} into {f}. In this

context, since [K] is symmetric, an orthogonal transformation {T}, which

diagonalizes [K], can be found. That is,

(2.2) [K) = [] T[K][T]

where [K] is a diagonal matrix.

17



Let [Tj{u} and [T]{f} be {} and {f}. Then the potential energy ?r

may be expressed as:

(2.3) r = -1 {u}T [K]{u} - {f}T{u}

In terms of the array components, 7r becomes:

(2.4) [1 = -

where the ki (i=1,2,...,n) are the diagonal entries of [K]

n^

Observe in Equation (2.4) that the last term: Efu1 does not explicitly

involve the nodal coodinates. Therefore, it does not effect the

minimization of 7r with respect to the nodal coordinates. Also, since the

u1 are positive and are independent variables in the minimization of 7r,

the minimization of 7r with respect to the nodal coordinates occurs when

the sum of the kij (the trace of [k]) is a minimum. Since the trace of a

matrix is invariant ,-,A,r an orthogonal transformation, minimizing the

trace of [k] is equivalent to minimizing the trace of [K].

18



2.2 ENERGY APPROACH

Consider a one - degree of freedom system. The external work done

(=fu) varies linearly with respect to u. Also the strain energy ( = 1/2 Ku 2 )

varies quadratically with respect to u. Potential energy is the difference of

strain energy and work done. See Figure 2.1.

From the instant, the structure is loaded the operating point moves

from the origin to the point where the potential energy reaches its

minima (equilibrium).

Now consider the structure with a reduced stiffness (K'< K). The

new strain energy and the potential energy curves are also shown in the

figure. Note that the strain energy curve has become slightly flatter.

Therefore the potential energy curve has reached a new low, which is

lower than the previous. The displacement has improved from Ua to Ub.

Therefore it is quite clear that in a single degree of freedom case, a less

stiff structure has a lower potential energy than the stiff one.

Next, consider an n - degree of freedom system. Using an

orthogonal transformation matrix, [K] can be diagonalized. This would de-

couple the degrees of freedom. Therefore each degree of freedom can be

19



compared with the single degree of freedom system as described above. If

[K] is the transformed stiffness matrix, then finding minimum ki

(i=1,2,...n) would yield the best grid. Since for the mesh configuration the

minimum iii have been found, the trace of [K] which is the sum of ku

will also be a minimum. But the trace is an invariant under orthogonal

trasformation. Therefore minimization of trace of [K] would lead to

minimization of potential energy.

It should be noted that the diagonal dominance of [K] is not

adversely affected by the minimization of trace. The improved stiffness

matrix is the result of redistribution of the nodes and of not any arbitrary

mathematical operation.
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Figure 2.1 -Strain Energy, Potential Energy and Work Done in a One Degree ofFreedom System
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3. APPLICATIONS

Applications of concepts developed are illustrated in the examples in

this chapter.

3.1 TAPERED BAR

3.1.1 DESCRIPTION

Consider the axially loaded tapered bar shown in Figure 3.1. (This is

the same problem examined by Prager [9] and Masur [161. The objective is

to determine a finite element mesh which best predicts the axial

displacement. Let the bar have length L and let it be divided into n elements

with n + 1 nodes (numbered 0 to n) as shown. Let the areas at the ends of

the bar be A. and A,. Let be the non dimensional length parameter

defined as:

(3.1) x

L

Then the area at any particular along the bar is

22
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(3.2) A Ao(1-cC)

where c is

(3.3) 
A-A
Ao

Hence, the area at the ith node is:

(3.4) Ai = Ao(1-c~j)

where, Ci is xi/L.

Let the individual elements have a uniform cross section. For

example, let the ith element have cross section area A and length li as in

Figure 3.2. (Note that the elements do not necessarily have the same

length.) Then A and li are:

A = Ai., +A i

2

(3.5)

li= xi - xi. 1  = L(el - i-)

The element stiffness matrix for the ith element is [5]

23



(3.6) [k] = A1E 1

where E is the elastic modulus. Then the trace r of the global stiffness

matrix is:

(3.7) 2E -A E
=I 11 L ii.J

The improved node location occurs when the trace is minimized

with respect to the nodal coordinates CI (i=1,2,...n-1). Hence, by setting the

derivative of r with respect to ei equal to zero we obtain:

(3.8)
0 r = 0 = E a (Ai. +Ai) --'T(A i+A i+ )  A-+AA+Al

C3 0  _ E GX + ai(j + A1..1 +Aj A1 +A1~1

Using equation (3.5) and simplifying we obtain

(3.9)

A1+1 -A i I + Ai.I + cAo ( [ -i

To simplify the analysis it is convenient to introduce the length ratio

24



parameter rij defined as li/lj. Then the ratio li+l/lj may be written as:

11r

(3.10) 11+1 1 ' =
li li ri

11

Then LA is

L lj ar S,

(3.11) L _ - r31 - _I! l ril ill

n
where S. is defined as Erjj.

jFl

Using this notation Equation (3.9) may be rewritten as

(3.12)

Ajj = A i 11 ,A1.1  [L-I" ' + cA i I +r11  jSn.

Also, C1 may be written as:

11 + 12 + + !i
(3.13) L L

25



+ r2 1 + r31 
+  + ri

Sn

1 Si=f 1. rj1 = -

SnJ=1 Sn

Then, from equation (3.4), Ai may be written as

(3.14) Al a A0 [i11~-) I

Specifically, A, and A 2 are

(3.15)

A 2  = A O 1 - c +,r2 )

To obtain the element area ratios let i=1 in equation (3.12). A 2 is

then

(3.16) A2 = A, (rn" 1 - + Aor 2 + cAor 2l 21 1]

26



Then, by using equations (3.15) to eliminate A, and A2 , we obtain

(3.17) Sn(1 - r21) = c

From the first of equations (3.15) we have

A, =Aorz

(3.18) or

A1A = r21Ao

Similarly, the second of equations (3.15) leads to

A2 2

(3.19) or

A 2

A, -

Next, let i=2 in equation (3.12). By using the same procedure we

obtain

(3.20) 1- r 32 = - (1- r32 + r 21)

27



But, in view of equation (3.17) this becomes

I - r32 = (1 - r 21) (1 - r32 + r21 )

(3.21) or

r21(r32  r21) = 0

Thus,

(3.22) r32 - r21

From equation (3.14) we have

(3.23) A 3 = Ao 1-c SU] Aorl

Therefore, we obtain

A3  A 2  A1(3.24) - - = - = r21 =r2
A 2  A, Ao

Proceeding similarly for i=3,4.... we get

28



(3.25)

An An., A,

Thus, we have the relations

r = r2l r32  2l

(3.26) r4 l r43 r32 r2 I -=r2

Hence, SI is the geometric series

(3.27) S 1r 2 + 21  + r M 2
- 1-r 20)

Then, from equations (3.14) and (3.17), we have

Ai A= A1 - (1 - r'i)] Ao

(3.28) and then

An A~r21 = A,

29



Then, from equation (3.3) we see that r21 is

(3.29) r21  (1 c)

Finally, by substituting into equation (3.13) we have

(3-30) = -j- (1 + r2 l + r3 l + " + ril)

1 - r~ I 1 - (+1 +

C C

This is the result obtained by Prager [9] in his analysis of the same

problem.

3.1.2 DISCUSSION

First, observe that in Equation (3.30) for a uniform thickness beam

c is zero and thus Ci is undetermined. This means that for a uniform
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thickness beam the nodal position are arbitrary. That is, all mesh are

equally optimal for a uniform thickness beam.

Next, consider again the element stiffness matrix of equation (3.6).

From equations (3.4) and (3.30) the scalar multiplier is

(3.31) EA, E(A1  + A1) A0c 1L + r21
li 2L(ei - .I) 2L 1 - r21

Since this is a constant (independent of i) the element stiffness matrix

is the same for each element. This means that each element has the same

strain energy. Masur [15] has suggested that this result is due to the simple

geometry of the problem.

Even with this simple geometry however, like the methods discussed

in section 1.3, the analysis needed to determine the optimal nodal

positions has been extremely detailed. With more complex geometries the

analysis will become intractable. However, it is not necessary to obtain

recursive relationships by analytical methods as employed in this example.

The criteria of minimizing the trace of the stiffness matrix is a

comparatively simple procedure - readily amenable to the development of

computer algorithms for optimal nodal locations.
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3.1.3 NUMERICAL EXAMPLE

To illustrate the value of optimizing the mesh consider an axially

loaded bar which tapers to 1/3 the base area as in Figures 3.1 to 3.3.

Specifically, let P, A., C, E, and L have the values:

(3.31) P = 20N, A = 0.0015m2, C = 2/3

E = 2.07 x 101 N/m 2, L = 4m

The objective is to find the axial displacement. From elementary

mechanics the axial displacement u at any location x is:

(3.33) - 1 L)

To compare the displacement results of finite element models with

Equation (3.33), four models of the bar, each having four elements, were

examined. One of the models had a uniform nodal distribution. Another had

the "optimal" mesh as developed in Equation (3.33). The remaining two

models had arbitrarily selected nodal distributions. The nodal

displacements were evaluated using the four models and compared with
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the displacements calculated by (333). Table 3.1 shows the results. Table

3.2 presents an error analysis and also an L2 - norm of the error. As

expected the optimum mesh produces the least L2 error.

TABLE 3.1 - Comparison Of Axial Displacements For The Tapered Bar Of
Figure 3.1 Calculated Using Various Models

Axial Exact Displacements using various models, 10"9 m
location displacement

x, m eq. (3.30), Uniform "Optimum" Mesh 3 Mesh 4
10"9 m Mesh Mesh

(Prager)

0.0 0.0 0.0 0.0 0.0 0.0

0.5 33.6276 33.60639 33.60639
1.0 70.46244 70.2679 70.41338

1.4409860 106.1461 105.4820

2.0 156.7020 156.1509 15.56506
2.5 208.3078 206.8158 207.1804

2.5358986 212.2923 210.9648
3.0 267.8830 266.5719

3.3678522 318.4384 316.4529
4.0 424.5845 421.1612 421.940 417.6195 417.9814
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TABLE 3.2 - Error Analysis (Tapered Bar)

Error for various meshes, 10"9 m

Axial Uniform "Optimum" Mesh 3 Mesh 4
location mesh mesh
x, m (Prager)

0.0 0.0 0.0 0.0 0.0
0.5 0.02121 0.02121
1.0 0.1945411 0.04906

1.4409860 0.664118
2.0 0.5506105 1.0514
2.5 1.492 1.1274

2.5358986 1.32769
3.0 1.311108

3.3678522 1.985439
4.0 3.423228 2.64433 6.965 6.6031

12 - norm 3.7119418 3.6246009 7.1232118 6.780697

3.1.4 OBSERVATIONS

[1] The analysis and the numerical results demonstrate the potential

usefulness of the trace minimization mesh improvement method.

[2] Minimization of the trace of the stiffness matrix is a relatively

simple mesh optimization procedure. It is readily adaptable to

algorithm development.
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Figure 3.1- Tapered Bar
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Figure 3.2 - Element in the Tapered Bar Model
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Figure 3.3 - Tapered Bar with Axial Load
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3.2 HEAT TRANSFER IN AN INFINITE CYLINDER

3.2.1 CONFIGURATION AND PROBLEM DEFINITION

Consider an annular cylinder with infinite length having inner and

outer radii: r. and r,. Let the thermal conductivity be K.. Let the

temperatures at the inner and outer radii be: T. and T,. Then the

governing equation for the temperature distribution along a radial lines is:

(3.34) [ r -tr] = 0

The boundary conditions are:

(3.35) T = To at r = ro

T = Tn at r = rn

The solution of equation 3.34 subject to equation 3.35 is:

(3.36) T= T + (To - Tn)
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Next, suppose that the temperature gradient at the inner surface is

specified as: q,. The boundary conditions are then:

dT_

(3.37) dr - qo at r= ro

T = T. at r= r

In this case the solution of equation 3.34 is:

(3.38) T = In- rOqoln Ir-.]

3.2.2 FINITE ELEMENT FORMULATION AND MESH OPTIMIZATION

Figure 3.4 shows the finite element model. It consists of a series of

annular elements. For elements (e) let the inner and outer radii be re

and r,. 1. The entries of the stiffness matrix are:

(3.39) k = 27rr, f r (dN -r j dr
39dr

39



where K, are the element conductivity constants and where the

element shape functions NIP and Nf are:

(3.40) N? = and NP (=
(r +, r. (r.+, r.)

By carrying out the indicated operations the element stiffness matrix

becomes:

(3.41) [k~] so ~ ~

where S. is defined as:

re+ re.1
(3.42) Se = -Ie

e. - re.i

Hence the trace r, of the global stiffness matrix is:

n
(3.43) r 2 S,

where n is the the number of elements.
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The trace may be minimized with respect to the nodal coordinates

by setting the partial derivative of r with respect to r., equal to zero.

This leads to the relatively simple relation:

(3-44) r,+ re

By repeated use of this relation the nodal positions are given by:

(3.45) re = ro (ru-le/n

3.2.3 NUMERICAL EXAMPLES

To illustrate the effectiveness of the method considers the annular

cylinder with the following temperatures specified on the boundaries:

(3.46) ro = 20 mm To = 1000 C

r. = 50 mm Tn = 00 C
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Let the conductivity be constant throughout the cylinder with value: 1.0.

Consider two finite elements models, each with four elements: Let

the first have a uniformly spaced mesh. Let the second have a mesh with

nodal spacing governed by equation 3.45. The objective is to determine

the temperature distribution across the thickness.

The solution of the finite element governing equations lead to the

results listed in Table 3.3. (The temperatures at the intermediate points, if

they are not obtained directly, are obtained using linear interpolation

between the nodal values.) The error is defined as the difference between

the theoretical results and the finite element results. The mesh governed

by equation 3.34 (called the "improved" mesh) is found to have zero

errors at the nodes. Hence, the L2 norm of the errors* is much smaller

than that of the uniform mesh.
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TABLE 3.3 - Comparison Between Finite Element Uniform Mesh and Improved
Mesh Temperature Results with Theoretical Values for
Temperature Specified Boundary Conditions

Temperature ' C Error

Radius Uniform Improved Theoretical Uniform Improved
(mm) Mesh Mesh Values Mesh Mesh

20.0 100.0 100.0 100.0 0.0 0.0

25.148669 76.21655 75.0 75.0 -1.216559 0.0

27.5 65.354967 65.920251 65.24534 -0.109625 -0.674909

31.622777 50.881148 50.0 50.0 -0.881148 0.0

35.0 39.024743 39.628662 38.92596 -0.098784 -0.702703

39.763536 25.538185 25.0 25.0 -0.538185 0.0

42.5 17.790692 18.316874 17.73661 -0.05408 -0.580262

50.0 0.0 0.0 0.0 0.0 0.0

L2 norm of error: 1.6033656 1.1340184

Next, consider the same cylinder but let the temperature gradient be

specified on the inner boundary. Specifically, let the boundary conditions

be:

(3.46) dT -5.4567833"C/mm at ro = 50 mm

dr

T = T = OC at r, = 50 mm

(The temperature gradient of -5.4567833 * C/mm on the inner boundary

leads to the same theoretical temperature distribution as in the first
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example.) Table 3.4 shows the comparisons between the finite element

solutions and the theoretical values of the temperature. Once again the

L norm of the error shows that the improved mesh provides better

results than the uniform mesh.

TABLE 3.4 - Comparison Between Finite Element Uniform Mesh and Improved
Mesh Temperature Results with Theoretical Values for
Temperature / Temperature Gradient Specified Boundary
Conditions

Temperature * C Error

Radius Uniform Improved Theoretical Uniform Improved
(mm) Mesh Mesh Values Mesh Mesh

20.0 99.47716 99.570031 100.0 0.52284 0.42997

25.148669 75.818072 74.677527 75.0 -0.818072 0.322473

27.5 65.01327 65.636818 65.24534 0.23207 -0.391478

31.622777 50.615125 49.78502 50.0 -0.615125 0.214981

35.0 38.82071 39.458273 38.92596 0.10525 -0.532313

39.763536 25.404668 24.892511 25.0 -0.404668 0.10749

42.5 17.69768 18.238117 17.73661 0.03893 -0.501507

50.0 0.0 0.0 0.0 0.0 0.0

L2 norm of error: 1.245467 1.0172293

Since the temperature gradient is specified at the inner boundary, it

is also of interest to know how the values of the temperature gradients

obtained using the two finite element meshes compare with each other
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and with the theoretical values. Table 3.5 provides such a comparison.

(the temperature gradients at the intermediate points, if they are not

obtained directly, are computed by using forward differences.) The

improved mesh has a small error at the inner radius as well as a smaller

1-2 norm of errors overall.

3.2.4 DISCUSSION

The numerical example show that the "improved" mesh of equation

3.45 produces results which are closer to the theoretical values than those

obtained using the uniform mesh. Therefore, the mesh of equation 3.45 is

an improvement over the uniform mesh for both the temperature fixed

boundary conditions and for the mixed boundary conditions.

The values of stiffness matrix traces of the uniform and improved

meshes are 74.666666 and 70.151974 respectively. This indicates that for

these examples the trace is not especially sensitive to the nodal locations.

Therefore, the difference in the L2 norms of error are not great. More

dramatic difference in the results will occur in problems where the trace is

more sensitive to changes in the nodal positions.
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TABLE 3.5 - Comparison Between Finite Element Uniform Mesh and Improved
Mesh Temperature Gradient Results with Theoretical Values for
Temperature / Temperature Gradient Specified Boundary
Conditions

Temperature C Error

Radius Uniform Improved Theoretical Uniform Improved

(rm) Mesh Mesh Values Mesh Mesh

20.0 -4.5951853 -4.8347453 -5.4567833 0.861598 0.622038

25.148669 -4.5951853 -3.8449325 -4.3396146 -0.2555571 -0.4946821

27.5 -3.4923413 -3.8449325 -3.9685697 0.4762284 0.1236372

31.622777 -3.4923413 -3.0577627 -3.4511702 -0.0411711 -0.3934075

35.0 -2.816404 -3.0577627 -3.1181619 0.3017579 0.0603992

39.763536 -2.816404 -2.4317489 -2.7446192 -0.0717848 -0.3128703
42.5 -2.3596907 -2.4317489 -2.567898 0.2082073 0.1361491

50.0 -2.3596907 -2.4317489 -2.1827133 -0.1769774 -0.2490356

L2 norm of error on gradients: 1.0986497 0.9918611

In summary, the results obtained in this paper confirm that nodal

positioning by minimizing the stiffness matrix trace leads to either an

optimum or near-optimum mesh. If the mesh is not optimum it can be a

starting mesh for other mesh refinement procedures and for procedures

using element division or element enhancement (h-methods or p-methods).
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Figure 3.4 - Finite Element Model of the Cylinder (Heat Transfer)
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3.3 AIRCRAFT LUG PROBLEM

3.3.1 INTRODUCTION

Accuracy and reliability of finite element computation are among the

most important considerations in numerical structural analysis. Run time and

costs are becoming less important. Indeed, the costs incurred in ensuring that

the results are accurate are negligible as compared with the costs of potential

consequence of wrong decisions [171.

In accurate finite element modelling, a combination of element size

modification (h-refinement) and element order modification (p-refinement)

provide the most efficient solution convergence. An exponential rate of

convergence can be achieved with optimally designed meshes and optimal

order refinements, [18,19]. From a practical standpoint, however, it is often

difficult to implement and achieve exponential convergence. Nevertheless,

Szabo [17] states that "good" results can be obtained through mesh design

along with element order refinements.

The most widely used procedure is to:
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[1] Select large elements where the solution is known to be smooth.

[2] Select smaller elements where the solution is known to vary rapidly;

as around points of singularity.

Szabo suggests that refinement toward the singularity should be in

geometric progression with the ratio of sizes of about 0.1 to 0.15. These

are empirical values. When small size ratios are used, bad element aspect

ratios are often introduced leading to poor mesh design. Extreme element

aspect ratios are the cause for overestimation of structural stiffness [19].

The intention of this study is to find a rationale which will guide

the analyst in selecting a good mesh. The procedure developed herein has

shown that an unproved mesh can be obtained by minimizing the trace of

the stiffness matrix. The conventional procedure, as outlined above, is used

in initial mesh selection. The mesh is then improved by minimizing the

stiffness matrix trace by moving the grid point locations. The "improved"

mesh can then be used in the h or p-version of mesh refinement leading

to a much faster convergence. It is believed that the effort spent in

minimizing the trace will be rewarded in convergence of the solution after

fewer h or p iterations.
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3.3.2 ANALYSIS

Convergence of finite element solutions are often measured by the

value of the total strain energy. With improvements in grid, the total strain

energy usually increases. Mesh improvements based on the total strain

energy produces convergence in the average sense. An analyst, however,

generally wants to know the location and the accurate value of the maximum

stress as well as accurate values of displacement at designated points as

dictated by design requirements.

If u is the actual displacement field and if i is the displacement

predicted by the finite element method, then I Iu - &I I is the norm of error

on displacement. Since the displacement formulation of the finite element

method renders the structure overstiff, u is larger than L. Therefore a

converges from below. Hence, from a practical standpoint, a combined

displacement, stress and strain energy criterion should be used.

In his study [17] Szabo has used hierarchical basic functions for

interpolation and has demonstrated p-version convergence in an analysis of

an aircraft lug as shown in Figure 3.5. The lug is 0.5 inches thick and the rest

of the dimensions, as shown, are in inches. It is made of isotropic

material of modulus of elasticity of 30,000 ksi and Poisson's ratio of

0.3. The lug is fixed along AB. A circular pin carrying a load of 10.0 kips,
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inclined at an angle of 45 degrees to the horizontal, fits tightly in the hole of

the lug and exerts pressure on it. The results of total strain energy changes

obtained in Szabo's modellings are listed in Tables 3.6 and 3.7 for easy

comparison.

In the present study, the standard QUAD4, QUAD8, TRIA3 and

TRIA6 elements of MSC - NASTRAN are used. The mesh used by Szabo

is shown in Figure 3.6. Note that elements 2 and 11 are distorted. In

attempting to improve the mesh, grid point 8 is moved to a new location as

shown in Figure 3.7. Next, grid points 2,3,5 and 6 are moved to obtain the

mesh of Figure 3.8. Table 3.6 shows the effect upon the total strain energy

along with the reduction in the stiffness matrix trace. (The trace of the

stiffness matrix is obtained by using a series of DMAP instructions of MSC-

NASTRAN as indicated in the Appendix.) This improvement is significant

when compared with results of Szabo (see Tables 3.6 and 3.7) for the same

number of degrees of freedom. (English units are employed in the tables.)
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TABLE 3.6 - Comparison of Performance of Meshes 1,2 and 3

Mesh 1 i Mesh 2 i Mesh 3
Trace (* 10') 8.0856 7.8712 7.5158
Degrees of Fieedom 36 36 36
Strain Energy(* 10-2) 1.966856 2.068929 2.179273
Displacement at
node 12 (* 10"3) 5.52766 5.92351 6.39045
Von-Mises Stress
at node 1 18.15 18.5 15.30
at node 4 23.42 24.5 20.51
at node 18 5.663 5.641 5.618
Max.Prin. Stress
at node 1 -2.056 -3.446 -2.364
at node 4 25.3 26.89 22.24
at node 18 4.97 4.73 1 4.696
Min.Prin. Stress
at node 1 -19.09 -19.98 -16.34
at node 4 4.361 5.803 4.092
at node 18 -1.195 -1.513 -1.528

The maximum vertical displacement occurs at the tip of the lug (node

12). In Table 3.6 it is seen that the lower value of trace is associated with a

higher maximum displacement (node 12). Since finite element models tend

to present "stiffer than actual" systems, the trace minimization demonstrates

the mesh improvement. In mesh 2 since only grid point 8 is moved to lower

the value of trace, the stress values at nodes 1 and 4 are more accurate

than those predicted by mesh 1. In mesh 3, elements 1 and 3 are

larger than those of mesh 1. Therefore, their centroids are farther

away from nodes I and 4 which leads to lower stress estimation at

those nodes. Thus, an improved displacement value is obtained at the
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expense of stress values. This indicates that the mesh near nodes 1 and 4

needs to be refined. Mesh 3 can of course be improved by further

minimization of the trace.

TABLE 3.7 - Variation of Strain Energy with P-Refinement.

Polynomial Order Degrees of Freedom Strain Energy (* 10.2)
1 36 1.73592
2 100 2.76935
3 170 2.83543
4 266 2.85719
5 388 2.86491
6 536 2.86839
7 710 2.86906
8 910 2.86928

Next, mesh 1 is refined by increasing the polynomial order to 2 to

obtain mesh la. Mesh 4 is constructed by refining mesh 3 using an h-

version modification catering to the regions of high stress around nodes 1

and 4 and around the hole.

When singularities are not present, an increase in p will result in an

increase in the rate of convergence. However, if singularities are present,

p-refinement, with a given mesh, will not necessarily result in an indefinite

increase in the rate of convergence. However an optimal rate of

convergence can be obtained by a proper spacing of the mesh around the
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singularity [261. Further mesh 4 is improved by reducing the trace of the

stiffness matrix to obtain mesh 5. Results of the three meshes are listed

in Table 3.8.

TABLE 3.8 - Comparison of Performance of Meshes la, 4 and 5.

Mesh la Mesh 4 Mesh 5
Trace (* 10') 43.166 32.577 31.402
Degrees of Freedom 100 96 96
Strain Energy(* 10.2) 2.994742 2.448802 2.440627
Displacement at
node 12 (* 10-3 ) 9.02065 732149 733578
Von-Mises Stress
at node 1 20.14 23.34 23.76
at node 4 26.79 30.62 31.13
at node 18 15.22 22.45 20.35
Max.Prin. Stress
at node 1 -5.086 -5.737 -5.978
at node 4 29.46 33.77 3438
at node 18 16.6 22.27 2034
Min.Prin. Stress
at node 1 -22.19 -25.68 -26.18
at node 4 6.552 7.805 8.1
at node 18 3326 -0344 -0378

Note that these meshes have almost the same number of degrees of

freedom and therefore their performar,.es can be compared with each

other. Since quadratic interpolation is is generally more accurate than

linear interpolation, mesh la predicts an improved strain energy value

compared to the other two. However, since the region around nodes I

and 4 and also around the hole have small elements in mesh 4 and 5,

54



the stress values predicted are much higher than those of mesh la. Also, the

displacement values are improved. The trace in mesh 5 is smaller because

the elements around the hole are less distorted as compared with those of

mesh 4. This leads to a larger displacement but at the expense of a lower

stress prediction around the hole. However, since a smaller trace improves

the mesh in the overall sense, the stress values at 1 and 4 are higher. It

should also be noted that the strain energy of mesh 5 is smaller than that of

mesh 4.

The convergence of finite element results in the energy norm is not

monotonic [28]. However, a larger displacement indicates a larger work done

by external loads and consequently a lower potential energy. Again mesh 5

could be improved by relocating the nodes to lower the trace.

Next, mesh 5a is constructed by increasing the polynomial order of

mesh 5 to two. Table 3.9 can be used for a comparative study of the three

meshes: mesh 1 used by Szabo, mesh la obtained by a p-extension of mesh

1, and mesh 5a obtained by combined h and p-extension along with the

improvement procedure based on trace minimization.

Increases in stress values of mesh 5a from those of mesh 1 vary

from 40% to 400%. Also, the increase in displacement is 65%. This shows
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the need for refinements and improvements. A large strain energy value

of mesh la indicates that a p- version refinement converges faster on an

average sense. Higher stress values of mesh 5a indicate the superiority of

the h-version refinement. Moreover, the h-version may introduce distorted

elements. To obtain the best overall mesh for a given number of degrees

of freedom, it is therefore useful to improve the mesh by trace

minimization procedure.

Conclusions:

In view of the foregoing results a combined stress, displacement and

strain energy criterion should be used to monitor the convergence. A

combined grid improvement and refinement procedure should be used for

the best results.

The study confirms that the h and p-extensions lead to improved

meshes. The study also shows that the stiffness matrix trace is a good

measure of the quality of a mesh, especially when singularities are present.

Therefore, the step by step procedure to be followed by an analyst is:

[1] Select large elements where the solution is known to be smooth.
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[2] Select smaller elements where the solution is known to vary rapidly.

[3] Improve the grid by reducing the stiffness matrix trace.

[4] Perform a numerical solution.

[5] Refine the grid by using the h-version refinement and by

introducing smaller elements in high stress areas.

[6] Improve the grid as in step 3.

[7] Refine the grid using the p-version refinement.

[8] Continue to iterate until the convergence criterion is satisfied.

TABLE 3.9 - Comparison of Performance of Meshes 1, la and 5a.

Mesh I Mesh la Mesh 5a
Trace (* 10') 8.0856 43.166 158.43
Degrees of Freedom 36 100 322
Strain Energy(* 10.2) 1.966856 2.994742 3.020364
Displacement at
node 12 (* 10-3 ) 5.52766 9.02065 9.10035
Von-Mises Stress
at node 1 18.15 20.14 25.25
at node 4 23.42 26.79 33.71
at node 18 5.663 15.22 23.48
Max.Prin. Stress
at node 1 -2.056 -5.086 -5.897
at node 4 25.3 29.46 36.91
at node 18 4.97 16.60 23.90
Min.Prin. Stress
at node 1 -19.09 -22.19 -27.68
at node 4 4.361 6.552 7.768
at node 18 -1.195 3.326 -0.872
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Figure 3.5 - Aircraft Lug
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Figure 3.6 - Szabo's Model - Mesh 1

-~

/

C'-'

/
/

/
w

//

5~)



Figure 3.7 - Mesh 2 (Lug Problem)
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Figure 3.8 - Mesh 3 (Lug Problem)
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Figure 3.9 - Mesh 4 (Lug Problem)
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Figure 3.10 - Mesh 5 (Lug Problem)
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3.4 DISK PROBLEM

3.4.1 DESCRIPTION

A disk with a uniform thickness of 0.5 inch and a 20 inch diameter is

supported at two points B and C on its perimeter. It is loaded at a point A,

on the perimeter as shown in Figure 3.11. It is modelled using TRIA6

elements of MSC-NASTRAN.

As indicated in the previous analysis of the lug, the initial mesh design

is an important step in the analysis. The circular disk is axisymrnetric. If the

loads are also axisymmetric, then it is advantageous to maintain that

symmetry by choosing annular ring elements. If the disk is modelled as

shown in Figure 3.12, then symmetry about four planes is retained. However,

the boundary conditions and the load warrant only symmetry about one plane

passing through AD. In this study, the interior nodes are located on the

circumference of a circle. Let r. be the radius of this circle. The non-

dimensional parameter = r,,/ro is varied to change the mesh design.

The graph in Figure 3.13 shows the variation of the trace of the
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global stiffness matrix and displacement at the center and Figure 3.14 shows

the strain energy and displacement under the load as a function of . The

trace reaches its lowest value at = , = 0.53. At values of e significantly

different from C,, elements become distorted leading to an increase in the

trace. As grid points are moved towards the point of application of the load

and support, the modeling of the region close to the periphery improves.

This is indicated by the increase in the values of displacement under the load

and strain energy. However, the improvement is restricted by the increasing

distortion of the elements which is indicated by the increase in trace values.

Therefore, both displacement under the load and strain energy reach their

maximum values at e = e,. They then decrease in a similar fashion. It is

evident that e, and C, do not coincide. The point at the center of the disk is

farthest from the periphery, and therefore, in accordance with the theory of

Saint - Venant, it should be least affected by the load and the boundary

conditions imposed. The displacement at the center reaches the maximum

at e,, the value at which the trace goes to a minimum. This shows that a

minimum trace procedure yields a good mesh in the regions away from the

boundaries and loads. Ho- ever it is not the best mesh for the specific loads

and boundary conditions applied. In order to achieve this, one has to use h

and p methods of refinements in the areas close to the boundaries. If the
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restriction that the interior nodes need to be on the circumference of a

circle, is relaxed, then the trace minimization procedure would yield a

mesh that has the least element distorsion. Best results could be obtained

by iterating on refinement and improvement steps until the error is below

the tolerance level.

3.4.2 CONCLUSION

This study shows that the trace minimization procedure improves the

mesh in an overall sense. For any specific load and restraint set, other

mesh refinement techniques need to be used.
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Figure 3.11 - Circular Disk with Load and Supports.
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Figure 3.12 - Disk Model Showing Four Fold Symmetry
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Figure 3.13 - Graph of Trace and Displacement at the Center of the Disk
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Figure 3.14 - Graph of Strain Energy and Displacement Under the Load on the
Disk
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3.5 LAME PROBLEM

3.5.1 DESCRIPTION

One of the classic problems, used as a bench mark by most

researchers, is that of a cylinder subjected to internal or external pressure.

Lame provided the theoretical solution for an infinitely long cylinder. Lame's

results can be used to evaluate the accuracy of finite element results. Since

it is possible to have models of only finite length, there is an inherent error

associated with the model. Moreover, when the cylinder is divided into

elements, discretization errors are introduced. The focus of this study is on

the minimization of discretization error by designing good grid patterns.

Consider a cylinder of inside radius r0 = 5 cms, outside radius r, = 10

cms, and length L = 40 cms as shown in Figure 3.15. Using symmetry of the

cylinder, only one half of the cylinder is modelled with the nodes on the mid-

section plane restrained in the axial direction. Two stacks of

triangular ring elements of MSC-NASTRAN are used as shown in

Figure 3.16. The nodes common to both stacks are arranged to be

on a cylindrical surface of radius r.. The non-dimensional parameter
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= r/r, is changed to vary the mesh pattern.

The graph in Figure 3.17 shows the variation of the trace of the global

stiffness matrix and the variation of the strain energy with respect to f.

Figure 3.18 shows that of the average radial displacement at the inside

surface. The average radial displacement is computed by adding the radial

displacement values at all the nodes on the inside surface and dividing the

sum by the number of nodes. The trace reaches its maximum value

at e = , - 0.7072 which is the geometric mean of the inside and the outside

radii. The strain energy reaches its peak at .= ,. It is seen that f. is

slightly smaller than e,. For a uniform mesh - = 0.745. If strain energy

is used as a criterion for convergence of the finite element solution, then the

mesh with = . would provide the best mesh. However, the mesh with

minimum trace is very close to the best mesh. Moreover it has been obtained

without solving the equilibrium equations. The study shows that the

minimum trace mesh is an improvement over the uniform mesh.

Convergence of strain energy does not guarantee the convergence of

displacement and stress values [17]. The average radial displacement at the

inside surface reaches its maximum at = ,, where e, is smaller than ,.

Once again the mesh with minimum trace is an improvement over the
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uniform mesh because et is closer to ed than Cu.

3.5.2 CONCLUSION

The study confirms that the trace minimization procedure will

provide a good starting mesh. Fewer refinement iterations will be needed

to achieve convergence in the finite element solutions.

73



Figure 3.15 - Cylinder (Lame Problem)
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Figure 3.16 - Finite Element Model of the Cylinder (Lame Problem)
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Figure 3.17 - Graph of Trace and Strain Energy (Lame Problem)
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Figure 3.18 -Graph of Average Radial Displacement at the Inside Surface
(Lame Problem)
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4. ALGORITHM DEVELOPMENT

The example problems have shown that the trace minimization

procedure yields either an optimal mesh, as in the Prager probiew, or a

near optimal mesh as in the other examples. In either case it yields a

very good starting mesh.

In any given problem, it may not be difficult to obtain an expression

for the trace of the stiffness matrix. It would, however, be very difficult to

obtain recursive relations by minimizing the trace of the matrix with

respect to the nodal coordinates in order to obtain the grid configuration.

Instead, let any arbitrary mesh (usually uniform mesh) be selected. This

mesh may then be improved by relocating the nodes such that the value

of the trace is lowered. The algorithm for trace minimization is shown in

the flow chart in Figure 4.1.

There are three fundamental issues which are important for the

success of the algorithm. First, the nodes that should be relocated need

to be identified. Second, the direction and magnitude of the movement of

each of the identified nodes need to be determined. Third, a criterion for

the termination of the improvement iteration loop needs to be established.
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The node identification step is relatively simple. Let ku and k. be

the largest and the smallest diagonal entries on the stiffness matrix.

Analogous to the methods of bisection, nodes associated with stiffness

entries larger than 1/2 (ku + k.) must be relocated. In general, the

"cut-off value could be expressed as rv, (Ku + Iu), where r, = 0.5 is one

specific choice. However, for best results, t, could be determined by

numeiAcal experimentation.

Next, one or several nodes could be moved at a time. The latter

choice of the two will certainly reduce the CPU time. Let qk be the set

of elements connected to node "i". Let , be the set of nodes associated

with elements in 0. Then the set 0, can be described as the "neighbor

set of node i". Note that in FEM, relocation of node "i" will effect a

change in the stiffness associated with its neighbor set only. One of the

fundamental requirements for better control in the process is to be able

to distinguish the effects of each individual change. Therefore two nodes, i

and j, will oualify for relocation only if there are no common nodes in

their neighbor sets 0, and Oj. In mathematical terms, the intersection of

neighbor sets of all qualifying nodes should be an empty set.

The determination of the direction and magnitude of the movement

of each identified nodes from its old location to its new location is
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relatively difficult. Observe that in the Prager problem, the scalar

coefficient in the determination of the trace (Equation 3.6) is given by

EA(x)/l(x). Any relocation of the node which increases the element length

also decreases the cross sectional area. Therefore it reduces thu btiffness

contribution to the trace. Node relocations can be accomplished by

observing the expressions for element stiffnesses and the role of each of

the parameters involved such as A(x) and 1(x) in the tapered bar problem.

Each node can be selected and moved to a new location manually by

using a graphic terminal. However the process is slow, cumbcrsome and

inefficient.

Another approach is, for each identified node, to obtain its neighbor

set. The.cri compute the trac. of the submatrix corresponding to the

neighbor set, and store it. The most important step in this approach is

the determination of the trace gradient. In the one dimensional case, the

gradient can be computed by difference formulae once the value of the

trace is known at another point. Therefore, select a new location at some

distance away. (A discussion on the magnitude of this distance is given in

the following paragraph). Next, compute the trace of the neighbor set

corresponding to the new iocation. The trace gradient computed will

indicate the direction and magnitude of movement for relocation. In the

two dimcnsional case, first compute the trace of the submatrix
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corresponding to the neighbor set of the node in its original location as

described before. Second, select a new location for the node in any

direction and compute the trace. Next, select another location in a

direction perpendicular to the direction chosen for the selection of the

first new location. Again compute the trace. Using the three trace values,

gradients in the two mutually perpendicular direction can be computed,

which when added vectorially will yield the gradient at the original

location. Similarly, in the three dimensional case, three new locations on

three mutually perpendicular lines should be used. Finally, the node

should be moved in the direction indicated by the gradient.

The magnitude of movement for gradient computation and for final

node relocation will be a fixed percentage of the distance between the

node under consideration and its neighbor in the direction of the

gradient. However the percentage can be fixed empirically and/or by

numerical experimentation.

The objective of this algorithm is to produce a mesh with the least

trace value. Tne hypothesis is that the trace minimization procedure will

distribute the stiffness uniformly among the nodes and elements. Therefore

the criterion for termination of the improvement iteration loop can be

based either directly on the decrement in trace valup or the uniformity of
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the stiffness values at all node points.

To see how uniform stiffness results in a uniform distribution of

error and therefore yields the best mesh, consider a finite element model

with n degrees of freedom (d.o.f.). If the mesh is to be refined by

introducing additional nodes, then it is necessary to know the expected

improvement in error before a refinement step is undertaken. O.C.

Zienkiewicz et. al. [20] and Peano et. al. [21] have shown that if the

n+lth d.o.f. is to be introduced hierarchically, tiien the error in the energy

norm is:

(4.1) en.1  I- ),, 2
I 1 11Kn+l,n+l

where, f.+l is force corresponding to the n+l1 th d.o.f., Kn+,,n+ is the

stiffness of the n+lth d.o.f., K,+4 ,n is the off-diagonal stiffness relating the

n+lth d.o.f. to the original n d.o.f. system, and u, is the array of nodal

displacements of the n d.o.f. system. The subscripts n,1 of the error e

refer to the n original d.o.f. and the new d.o.f.

Zienkiewicz [22] has used the above error relation to define an

error indicator in the form:
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1f N,,, d3

(4.2) 17,1 = K n+l,n+l

where, f is the finite element residual.

In an adaptive refinement strategy, these indicators are normally

calculated for all the d.o.f. corresponding to the next refinement. The

indicators serve the purpose of identifying the region where refinement is

necessary.

Next, the error corresponding to the previous iteration wherein the

nth d.o.f. was added, is:

(4.3) e.- = f, - Kn 1u 1 )2

The corresponding error indicator is:

(4.4) 
-

These derivations are for the hierarchical finite elements. However,

the error with the conventional finite elements will be of a similar form.
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The most general method of generating good grids is to have an

equal distribution of some specified weight function. ( See Eiseman [23]

for a complete discussion on adaptive grid generation.) Often, the error in

the finite element solution is used as the weight function j24]. Therefore

the objective is to distribute the error equally among all elements.

However, the value of the residual " can be obtained only after the

equilibrium equations are solved. Nevertheless, one way of obtaining an

equi-distribution of error a priori is by having uniform element stiffnesses.

As a consequence, " will be nearly uniform among the elements. The

trace minimization procedure developed herein produces such a result.

Consider again the Heat Transfer Example of section 3.2. Note that

each of the ratios in the optimality condition, Equation (3.44), can be

equated to a constant -y.

(4.5) r, = r2 - - r - r.

ro r, r. r.I

Substituting into Equation (3.42), the element stiffness coefficient is

(4.6) S. = r k, 1

which is a constant. Therefore the trace minimization procedure
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produces a uniform element stiffness.

Finally, observe the graphs of errors in Figures 4.2, 4.3 and 4.4. The

errors are equally distributed with the improved mesh. There is a skewed

distribution with the uniform mesh. In order to compare the error

distribution among the elements, rms errors were calculated using 50

uniformly spaced points along the length of each element. Also the overall

rms error for the model was calculated using all the points. Table 4.1

shows the rms error distribution. Note that in all the cases, the improved

mesh distributes the error more uniformly than the uniform mesh. The

rms errors on the elements are almost exactly equal in the case where

temperatures are specified at the boundaries. Therefore the mesh obtained

is optimal. Similar results, however, are not obtained in the case where

both temperature and temperature gradient are specified because of the

inability of FEM to strongly satisfy the Neumann boundary conditions

[25]. Nevertheless, it demonstrates the usefulness of the trace minimization

procedure in a priori grid refinement.
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TABLE 4.1 - Comparison of RMS Error Distribution Among the Elements
Between Finite Element Uniform Mesh and Improved Mesh for
the Two Models with Different Boundary Conditions.

Temperature B.C. ITemperature/Gradient B.C.
Temperature Temperature Gradient

Uniform Improved Uniform Improved Uniform Imdroved
Elemetor 1.0479 0.5171 0.6786 0.2402 0.6029 0.5183
Element 2 0.6688 0.5171 0.4237 0.2980 0.3594 0.4122
Element 3 0.4422 0.5171 0.3082 0.3782 0.2392 0.3278
Element 4 0.2857 0.5171 0.2430 0.4694 0.1134 0.1654

Overall 0.6800 0.5210 f 4494 0.3586 0.3755 0.3781

Another advantage of using uniform stiffness criterion is that the

matrix condition number improves. Matrix condition number r. may be

shown that:

(4.7) x

Xm

where X,. is the largest and , is the smallest eigen values of matrix K.

When, definition (4.7) is used, K it is called the spectral condition number.

If k,, and k, denote the smallest and largest diagonal entry of matrix K, an

expression for the lower bound for r. would be:

(4.8) k,,
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Utku and Melosh [271 have shown that the decimal digits lost in

computation of displacements in finite elements to be:

(4.9) D = p + log,,eq + logA

where D is the decimal digits lost in the computation, e, is the residual

unbalanced error and p is the precision of the machine in decimal digits.

Note that for a mesh with uniform stiffnesses, k,, = k,, and therefore k > 1.

If K is equal to unity, then digits lost in the computation is the minimum.

The criterion of uniform stiffness therefore attempts to obtain results with the

least manipulation error.
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Figure 4.1 - Flow Chart of Trace Minimization Algorithm

START

Create a (Coarse) Mesh

Assemble the Stiffness Matrix

Compute the First Invariant of the
Stiffness Matrix (I)

A

Locate the Largest Entry on the
Diagonal of the Stiffness Matrix

Get the Associated Node Number (N) J

Obtain the Elements Associated
with Node N

B

88



Figure 4.1 (cont)
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Figure 4.2 - Graph of Error in Temperature in the Cylinder Model with
Temperature Specified Boundary Conditions
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Figure 4.3 - Graph of Error in Temperature in the Cylinder Model with both
Temperature and Temperature Gradient Specified Boundary
Conditions
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Figure 4.4 - Graph of Error in Temperature Gradients in the Cylinder model
with both Temperature and Temperature Gradient Specified
Boundary Conditions
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5. CONCLUSIONS AND RECOMMENDATION

5.1 CONCLUSIONS

Making a proper choice of mesh is an important step in the finite

element analysis for obtaining accurate results. Although engineering

judgment and prior knowledge of analysis prove helpful in mesh design,

the procedure of trace minimization makes it possible to obtain good

meshes without depending upon such judgments and knowledge. Any

arbitrary mesh may be used. The procedure then relocates the nodes such

that the value of the stiffness matrix trace is lowered. As a consequence

it redistributes the total error nearly uniformly among the elements. Thus

the resulting mesh is either optimal or near optimal. The main advantage

of the procedure is that a good mesh can be obtained before the

equilibrium equations are solved. A posteriori methods could be used to

refine the mesh even further. With the use of the trace minimization

procedure, fewer a posteriori refinements become necessary to obtain the

desired accuracy level than when the procedure is not used.

Most finite element packages have routines to check the correctness

of the mesh generated. They check node coincidences, element coincidence
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and element distortions. The routines iterate on the elements to check if

the distortion is lower or higher than a set tolerance. As demonstrated in

the aircraft lug analysis example, the trace minimization procedure yields a

mesh with minimum element distortion - a useful byproduct. Moreover, if

the algorithm presented in Chapter 4 is implemented properly, the CPU

time required may not be excessively larger than that required for the

routines used for a distortion check.

Finally, the procedure improves the stiffness matrix condition number

and therefore reduces the truncation errors. The benefits derived obviously

outweigh the cost of implementing the procedure.

5.2 RECOMMENDATIONS

The algorithm outlined in Chapter 4 needs to be coded for efficient

processing. Some of the constants, such as the cut off parameter, need to

be determined by numerical experimentations. The procedure needs to be

validated by applying it with problems belonging to classes other than

those considered in this dissertation work.

In most structural problems, the stiffness matrix is symmetric and
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positive definite. The procedure developed is based upon these

assumptions. It will be useful to develop similar procedures for problems

with stiffness matrices that are non-symmetric and not positive definite.

95



6. REFERENCES

[1] Zienkiewicz, 0. C.: The Finite Element Method; 3rd edition, McGraw

Hill, New York, 1977.

[2] Zienkiewicz, 0. C., Morgan, K.: Finite Elements and Approximation,

John Wiley & Sons, New York. 1983.

[3] Segerlind, L. J.: Applied Finite Element Analysis, Wiley, New York,

1984.

[4] Reddy, J. N.: Energy and Variational Methods in Applied Mechanics:

With an Introduction to the Finite Element Method, Wiley, New York, 1984.

[5] Huston, R. L. and Passerello, C. E.: Finite Element Method: An

Introduction, M. Dekker, New York, 1984.

[6] Shephard, M. S.: "Approaches to the Automatic Generation and

Control of Finite Element Meshes", Applied Mechanics Review, Vol. 41, No.

4, April 1988.

[7] Brown, P. R.: "A Non-Interactive Method for the Automatic

Generation of Finite Element Meshes Using the Schwarz-Christoffel

96



Transformations", Computer Methods in Applied Mechanics and Engineering,

25 (1981), 101-126.

[8] Shephard, M. S.: "Finite Element Grid Optimization with Interactive

Computer Graphics", Ph.D. Dissertation, Cornell University, January 1979.

[9] Prager, W.: "A Note on the Optimal Choice of Finite Element Grids",

Comp. Methods Appl. Mech. Eng., Vol. 6, No. 3, November 1975, pp. 363-

366.

[10] Melosh, R. J.: "Development of the Stiffness Method to Define

Bounds on Elastic Behavior of Structures", Ph.D. Thesis, University of

Washington, Seattle (1962).

[11] Key, S. W.: "A Convergence Investigation of the Direct Stiffness

Method", Ph.D. Thesis, University of Washington, Seattle (1966).

[12] Carroll, W. E. and Barker, R. M.: "A Theorem for Optimum Finite

Element Idealizations", Int. Journal of Solids & Structures, Vol. 9, (1973),

883-895.

[13] Prenter, P. M.: Splines and Variational Methods, Pure and Applied

Mathematics, Wiley-Interscience Series of Texts, John Wiley & Sons, New

97



York, 1975.

[14] Robinson, J.: "An Introduction to Hierarchical Displacement Elements

and the Adaptive Technique", Finite Elements in Analysis and Design, Vol.

2 (1986), 377-388.

[15] Kittur, M. G.: "Finite Element Mesh Improvement by the

Minimization of the Stiffness Matrix Trace", Ph.D. Dissertation, University of

Cincinnati, 1988.

[16] Masur, E. F.: "Some Remarks on the Optimal Choice of Finite

Element Grids", Comp. Methods Appl. Mech. Eng., Vol. 14, May 1978, pp.

237-248.

[17] Szabo, B. A.: "Implementation of Finite Element Software System

with h & p Extension Capabilities", Firnite Elements in Analysis and Design

2 (1986), 177-194.

[18] Babuska, I., Gui, W., and Szabo, B. A.: "Performance of the h, p and

h - p versions of the Finite Element Method", Institute for Physical Science

and Technology, Laboratory for Numerical Analysis, Technical Note BN -

1027 (September 1984).

98



[19] Szabo, B. A.: "Estimation and Control of Error Based on p -

Convergence", Proc. Int. Conf. on Accuracy Estimates and Adaptive

Refinements in Finite Element Computations (ARFEC), Lisbon, Portugal

(1984).

[20] Reed, K. W. and Cardinal, J. W.: "Finite Strain Analysis by a Stress-

Function Method", Computational Mechanics, Vol. 2 (1987) 31-44.

[21] Zienkiewicz, 0. C. and Craig, A.: "Adaptive Refinement, Error

Estimates, Multigrid Solution, and Hierarchic Finite Element Method

Concepts", Accuracy Estimates and Adaptive Refinements in Finite Element

Computations, edited by Babuska, I., et. al., John Wiley & Sons Ltd., (1986).

[22] Peano, A., Favelli, M., Riccioni, R., and Sardella, L: "Self Adaptive

Convergence at the Crack Tip of a Dam Buttress", Int. Conf. on Fracture

Mechanics, Swansea (1979).

[23] Zienkiewicz, 0. C., Kelly, D. W., Gago, J. P. de S. R., and Babuska,

I.: "Hierarchical Finite Element Approaches, Adaptive Refinements and

Error Estimates", The Mathematics of Finite Elements and Applications,

Editor Whiteman, J. R., Academic Press (1982).

[24] Eiseman, P. R.: "Adaptive Grid Generation", Computer Methods in

99



Applied Mechanics and Engineering, Vol. 64, Nos. 1-3, October 1987, pp.

321-376.

[25] Gago, J. P. de S. R., Kelly, D. W., and Zienkiewicz, 0. C., "A

Posteriori Error Analysis and Adaptive Processes in the Finite Element

Method: Part II - Adaptive Mesh Refinement", Int. J. for Num. Methods in

Engineering, Vol. 19, pp. 1621-1656.

[26] Thomasset, F.: Implementation of Finite Element Methods for Navier-

Stokes Equations, Springer Series in Computational Physics, 1981, pp. 11.

[27] Fried, I. and Yang, S. K., "Best Finite Element Distribution Around

a Singularity", AIAA Journal, Vol. 10, September (1972), pp. 1244-1246.

[28] Fried, I.: "Discretization and Round-Off Errors in the Finite Element

Analysis of Elliptic Boundary Value Problems and Eigenvalue Problems",

Ph.D. Dissertation, MIT, 1971.

100



APPENDIX

MSC-NASTRAN allows the user to compute intermediate values or

custom build solution sequences via the Direct Matrix Abstraction

Program known as DMAP module. These DMAP instructions typically

preceed the last card "CEND" in the Executive Control Deck. The

following set of DMAP instructions were used in the trace calculations:

Nastran Executive Control Deck

ID PROBLEM3,LUG

TIME 1

SOL 24

0

ALTER 219

DIAGONAL KGG/KGGD/ $

MATGEN , /IDEN/l/NDF/0/0 $

DIAGONAL IDEN/IVEC/ $

TRNSP IVEC/IVECT/ $

SMPYAD IVECT,KGGD, ,, ,/TRACE/2////////2 $

MATPRN TRACE // $

CEND

Case Control Deck.
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Where KGG is the global stiffness matrix, KGGD is the vector of

diagonal stiffness entries, IDEN is an identity matrix of size NDF by

NDF, IVEC is the vector of diagonal entries of IDEN, IVECT is

transpose of IVEC and TRACE is a matrix of size 1 by 1 and contains

the value of the trace. Note that in the instruction for matrix generation

the variable NDF has to be replaced by the number of degrees of

freedom in the model.
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